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Abstract Recent theoretical and experimental advances in the study of homogeneous 
nudeation are miewed. with emphasis placed on phase transitions involving single- 
mmponent liquids (condensation, cdvitation, and crystallization from the melt). 
Extensions of dassical nucleation theory are desaibed and compared with new 
experiments that now directly measure rucleation liltes. Novel methods of statistical 
mechanics, including density-functional theory and mmputer iimulations, are presented. 
The recent rapid evolution of this field has opened up many new questions for further 
iesearch. 

1. Introduction 

In a tirst-order phase transition, there is a discontinuous change in some order 
parameter between the two phases. Such a change is driven by lowering of the 
free energy as the new phase forms. Close to the equilibrium transition point, the 
original phase remains metastable, however, and a fluctuation is required to cause 
the appearance of the first region of the new phase. Such a process of nucleation is 
thermally achieved and, depending on the height of the free-energy barrier, its rate 
can be very slow or very fast. In the former case, large deviations from equilibrium 
may be required before the stable phase first appears, and significant hysteresis will 
be seen across the transition. 

Nucleation has many practical consequences in science and technology. In 
materials science, the casting of metals gives physical properties that depend on the 
conditions of crystal growth. If large undercoolings can be achieved before nucleation 
occurs (as in rapid solidification processing [l]) different and potentially useful forms 
of the metals may be produced. In atmospheric sciences, the nucleation of both 
water droplets and ice clystals in the atmosphere has a major effect both short-term 
on the weather and long-term through global warming (or cooling) by cloud formation 
caused by atmospheric aerosols [2]. In biology, there is much interest in bypassing 
nucleation of ice in the cryopreservation of human h u e s  [3]. 

Although nucleation potentially plays a role in the dynamics of every first-order 
transition, this review will be limited to a number of fundamental aspects. It will 
consider only single-component systems, and thus leave out some very interesting 
aspects of condensation of binary vapours or crystallization of alloys. It will discuss 
only homogeneous nucleation, that occuring in the bulk of a pure phase, and thus 
ignore the important practical subject of heterogeneous nucleation by impurities 
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or on surfaces. Fmally, the emphasis will be on nucleation involving liquids: the 
condensation of liquids from the vapour (the most thoroughly studied case), the 
cavitation or bubble formation that results when a liquid is placed under negative 
pressure, and the crystallization of solid from the melt (the reverse process of melting 
of a solid generally occurs at the surface or near grain boundaries, and is rarely 
homogeneous). In all of these areas there have been recent important advances, 
involving a combination of more accurate experiments, new theoretical methods, and 
novel computer simulations. 

Section 2 outlines a general theory of nucleation, stressing what approximations 
are made at each stage. Although this section is based on earlier work [4], the 
actual approach presented is new, and avoids some of the problems of other methods 
that depend on quasi-equilibrium descriptions of what is certainly a non-equilibrium 
process. This section concludes with a description of traditional classical nucleation 
theory. Section 3 introduces some of the new experimental techniques for studying 
both gas-liquid and liquid-solid nucleation, without providing an exhaustive list of all 
recent experiments. Section 4 describes some modifications of classical nucleation 
theory, while section 5 introduces a new statistical mechanical approach based 
on density-functional theory. Fmally, section 6 summarizes some recent computer 
simulations that bear on the interpretation of nucleation experiments. 

?k.o earlier reviews on nucleation by the present author have had somewhat 
different emphases: [5] concerned only liquid-solid nucleation, and [6] was primarily 
oriented toward density-functional methods. Although bath of these subjects are 
discussed in this article, the purpose here is to present a broader overview of recent 
advances. 

2. Steady-state nucleation 

21. Nudealion ldnetics 

A theory of nucleation must have at its Centre a model for the rates and mechanisms 
by which small clusters of the new phase gain or lose particles. Even before this can 
be attempted, however, it is necessary to identify the nucleus itself. For condensation 
from a low-density gas, or for crystallization from dilute solution, it is straightfolward 
to identify isolated large clusters, as they di&r sharply in density or composition 
from their immediate surroundings. It is much less evident how to draw boundaries 
in fluids near the critical point, however, or in a crystal forming from the melt. In 
these cases, the very identification of a number of particles i with a nucleus at a 
given time can be problematical, and continuum methods such as those discussed in 
section 5 may be more appropriate. 

Suppose, however, that we restrict ourselves to the simpler cases in which a 
molecule number can be assigned to a nucleus. Nucleation dynamics then involves a 
set of rate equations by which clusters of different sizes gain or lose particles. Note 
first that the very act of writing time-focal rate equations involves an assumption about 
lack of memory: the probability that a given cluster will undergo a particular change 
in particle number during a time interval is independent of its past history. In other 
words, there is not correlation behveen successive events that change particle number 
in a cluster. Moreover, the use of rate constants involves the implicit assumption 
that the temperature does not change as clusters grow or shrink As the phase 
change must entail the evolution of heat, this means that clusters are thermally 
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equilibrated between collisions that change particle number. In some gas-liquid 
nucleation experiments, this is achieved by working with a large excess of an inert 
background gas such as helium. Little work has been done for the situation where 
this not me and temperature changes result [7]. 

The next assumption that is usually made is that clusters grow or shrink via the 
attachment or loss of single molecules. Events in which pre-existing clusters collide 
and fuse are ignored, as are those in which a cluster fissions into two or more 
other clusters. This should be a reasonable approximation for condensation at low 
pressures, where almost all molecules are isolated 'monomer', but it does not appear 
to have been tested in any extensive way. Making this approximation leads to a set 
of coupled rate equations for the number densities n(i ,  1 )  of clusters of size i at 
time t. They have the form 

an(i ,  t ya t  = p ( i  - iln(i - I, t )  - -,(+(i, t )  - p ( i ~ i ,  t )  

+ Y ( i  + I)n(i + 1, 1 )  (1) 

where p(i) is the forward rate at which a cluster of size i gains particles, and y ( i )  
is the backward rate at which it loses particles. The forward rate will depend on the 
concentration of single molecules in the surroundings, and in the simplest case will 
be proportional to that concentration. If monomer depletion is significant over the 
time-scale studied, then of course this forward rate constant will change with time. 

Equation (1) provides a starting point for studies of transient nucleation. Given 
an initial distribution of clusters of size i (or perhaps no clusters at all, only 
monomer) how does the cluster distribution evolve with time after an abrupt change 
in temperature or pressure? It is usually the case that after a transient time T 
during which the cluster distribution changes, a steady state emerges in which there 
is a continuous €lux of monomer coverted to large clusters, but the distribution of 
intermediate-size clusters stops changing. The nature of this transient nucleation (and 
the calculation of the transient time T )  has attracted recent interest [8-13]. Pansient 
nucleation can be studied experimentally by counting crystallites as a function of time 
in liquids near their glass transition [14,1.5], and programmed quenches (in which the 
sample is held for a period at two or more tempertures) can be used to gain still 
more information about transient nucleation kinetics [16,17]. These areas lie outside 
the scope of this review, however, and are not considered further here. 

Define a flux J (  i + i) as the net rate at which clusters of size i become clusters 
of size i + 1. It is given by [4] 

J ( i + i ,  t ) = P ( i ) n ( i ,  t ) - y ( i + l ) n ( i + l ,  t )  (2) 

an(;, t)/a1 = J ( i -  $, t )  - J(i+ $, 1 ) .  

so that 

(3) 

Let us now consider a steady state, in which the populations of different sizes of 
clusters no longer depend on time. In some experiments (see section 3) this is 
achieved by removing large enough clusters and breaking them up into monomer 
again; in other cases the steady state is a plateau region that is reached after a 
characteristic transient time destroys initial conditions but before significant monomer 
depletion occurs. In the steady state, all fluxes are equal to a single constant flux J: 

J(i+& t ) = J  (all i, t )  (4) 
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and it is this flux that is identified with the nucleation rate sought by theory or 
experiment. 

Ilb proceed Further, it is convenient to define a function f ( i )  by the recursion 
relation 

f ( i  + 1) = [P(i)/r(i+ l)lf(i) (5) 

with f(1) = 1. Dividing (2) by p ( i ) f ( i )  = y ( i  + l)f(i + 1) (after setting J to a 
constant in the steady state) gives 

J/P(i)f(i) = n ( i ) / f ( i )  - n(i  + l)/f(i t 1). (6) 

This equation can be summed from i = 1 to a limiting value i = i,,, giving 

Let us now examine the dependence of f ( i )  on i. This function can be rewritten 
as 

The ratio p(i - l)/y( i) is the rate at which a cluster of size i - 1 gains a particle 
divided by the reverse rate at which the duster of size i loses a particle. Exactly 
at phase coexistence, in the thermodynamic limit of large enough i, these rates are 
equal. In the metastable state studied in nucleation experiments, however, the new 
phase is thermodynamically stable, and this means that for large enough i this ratio 
must be larger than 1 (the forward rate must be larger than the reverse). For large i, 
then, f(i) must grow with i, increasing by a factor larger than 1 for each increase in 
i by 1. (This in fact corresponds to exponential growth of f with i.) We must clearly 
have n( imx) < n( 1) (as otherwise the assumption of little depletion of monomer 
would be drastically violated). By choosing i,, large enough, the second term on 
the right side of (7) will then be negligible compared to the first. Because p( i) 
is a smooth and (at least Cor large i) increasing function of i, the sum on the left 
side of this equation can be extended to infinity, with convergence guaranteed by the 
exponential fall-off of llf(i). This leaves 

This equation gives a direct expression for the nucleation rate in terms of the forward 
and reverse rate constants. 

22. Classical nucleation lheory 

Up to this point, the approximations introduced have been well controlled. The next 
step is straightforward for condensation from dilute gases (or crystallization from 
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dilute solution) but less evident for crystallization from the melt or for cavitation. 
The latter cases will be considered further in section 23. 

The forward rate constant for addition of a particle to a cluster in a dilute gas 
should be proportional to the gas pressure, so that p(i) can be written [4] as S&(i) ,  
where S = P / P ,  is the supersaturation, the ratio of the actual pressure to the 
equilibrium vapour pressure of the liquid at the same temperature T, and pe( i) is 
the forward rate constant at pressure P,. The rate at which a cluster loses particles 
(the reverse rate constant), on the other hand, should be independent of gas pressure 
so that 7( i )  = 7Ji). The function f(i) then has the form 

The ratio of products of rate constants in (10) has a simple interpretation: it is the 
equilibrium constant for the formation of a cluster of size i from isolated molecules, 
all at pressure Pe. Thii implies that 

f ( i )  = S”-’exp(-AG,/k.-,T) (11) 

i A  + A i  (12) 

where AG; is the Gibbs free energy change for the reaction 

and k, is the Boltzmann constant. For condensation from solution, the analogous 
relations involving supersaturation of the solute particles are evident. The result is 
an expression for nucleation rates in terms of equilibrium free-energy changes for 
cluster formation. 

Classical nucleation theory then makes a single rather drastic approximation. 
Suppose the i molecules are converted to a cluster by the following pathway: fust 
the molecules are transferred from the gas phase (at pressure Pe) to the liquid phase 
at the same pressure. The freeenergy change for this step is zero, because the two 
phases coexist at this pressure. Then a droplet of size i is ‘carved out’ of the liquid 
and separated from it. The latter step involves the creation of additional interface 
between gas and liquid, so a reasonable approximation for the free-energy change is 

AGi = u A ( i )  (13) 

where c is the surface tension of the gasliquid interface and A ( i )  is the surface 
area of a cluster of size i. If the cluster is taken to be spherical and to have the Same 
volume per particle U, as the bulk liquid, then 

A(i) = ( 3 6 ? r ) * / ’ ~ , ? / ~ i * / ~ .  (14) 

Classical nucleation theoly thus relies on a macroscopic approximation for the Bee 
energy of clusters. It obviously makes no sense for small clusters of a few molecules, 
but (as we shall see) this does not matter. Whether it is correct for clusters of, let us 
say, 100 molecules is a separate question that must be tested against experiment 
or against carefully controlled theoretical calculations. Let us define a reduced 
(dimensionless) surface tension through [18] 

9 = (36?r)‘/’v~/’u/kBT. (15) 
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The nucleation rate then has the form (combining (9), (11) and (13)) 

Examine the three terms in the denominator of the sum in (16). The first is 
Pe(i) and varies relatively slowly with i (for a spherical nucleus it will grow as the 
power of i). The second term grows exponentially with i (because S > I), while the 
third term falls off exponentially with The combination of these last two terms 
means that the denominator initially decreases rapidly as i increases from 1, it then 
reaches a minimum, and finally increases as the Si term begins to dominate. The 
terms in the sum, then, are largest near the minimum in the denominator. Setting 
the derivative of the denominator to zero at its minimum then defines the size of the 
critical nucleus i' via the equation 

(d/di)(pe( i )Si  exp(-OiZ/')) = 0 at i = i'. (17) 

In practice, &(i) is usually taken to vary slowly with i and is removed from the sum 
and replaced by fie(?). The two exponential terms can be written as exp(-g(i)), 
where g ( i )  = Qi2l3 - i In S. Setting the derivative of g(i) to zero then gives 

If the critical nucleus i' is large enough, then many terms near i' contribute to 
the sum and it can be replaced by an integral. In the method of steepest descents, 
the function exp(g(i)) is approximated near its maximum by 

exp(g(i)) sz exp(g(i*)) e x p ( - ~ l g ~ ~ ( i * ) l ( i  - i*)2) (19) 

where g " ( i )  is the second derivative of g ( i )  and the integration is extended to &W. 
"k ing  g( i )  as above then gives the fmal result for the steady-state rate: 

J = (VI( l)pe( i*)/3) ( Q/7r)'/2(i*)-2'3 exp [ - $$?'/(In S)'] . (20) 

It should be stressed that the approximation leading from (16) to (20) are 
mathematical, not physical ones. The actual result of classical nucleation theory 
is embodied in (16), which can easily be evaluated by numerical summation. 

To complete the theory, the forward rate fi,(i) must be evaluated in the vicinity 
of the critical nucleus size i'. If the nucleus is taken to be spherical (as above) and 
collisions of monomer with its surface are taken to occur at the gas kinetic rate for 
an ideal gas, then 

pc(i) = (~~T/2~m,)"~(n(l)/S)A(i) (21) 

where m, is the mass of monomer molecules and the surface area of the cluster 
A( i) is defined in (14). We have also used the fact that the monomer concentration 
at pressure P, is reduced from its value n(1) at the pressure of the nucleation 
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experiment by a factor of S. Inserting this into (20) gives the final result h m  
classical nucleation theory for condensation from a dilute vapour: 

The equivalent result for crystallization from a dilute solution can easily be calculated 
by using the rate at which solute particles diffuse to the surface of the growing nucleus 

Equation (22) differs in two respects from other often quoted predictions 1191. 
Fmt, other approaches sometimes introduce a multiplicative factor (less than 1) which 
is the sticking probability of a molecule colliding with a liquid surface. This factor 
is assumed Tiere to be unity. Second, the factor of S in the denominator of (U) is 
often omitted. It results from a correct treatment of the nucleation kinetics, and its 
presence was Wt pointed out by Courtney in 1961 1201. Blander and Katz reached 
a similar conclusion independently in 1972 [21]. Many comparisons of 'classical 
nucleation theory' with experiment have omitted this factor, in the future it would be 
more correct to include it. 

23. CtystaUizafion pom Ihe melt and cavifafion 
The theory presented in sections 21 and 2 2  was designed to predict the nucleation 
rate for condensation from a dilute vapour or crystallization from a dilute solution. 
In this section, some of the difficulties with extending that theory to other types of 
nucleation processes are pointed out. 

It has already been stated that it may not be easy to identify nuclei in the case 
of crystallization from the melt. One promising approach is to examine the local 
coordination about atoms, which differs between liquid and crystal, and to use that 
to identify clusters [U]. Even if this can be done, however, there are problems 
with applying the approach described earlier in this section to crystallization. For 
example, the kinetic approach of section 2.1 took advantage of the very reasonable 
assumptions that the forward rate is proportional to gas density while the reverse rate 
is independent of gas density. This allowed the nuclcation rates to be rewritten in 
terms of free-energy changes for clusters in stable equilibrium at pressure Pe. Such 
simplifying approximations are not possible for crystallization from the melt. Although 
Katz and Spaepen [23] have extended the kinetic approach to condensed systems, they 
were forced to use negative pressures to stabilize clusters at k e d  temperature, and 
to make ad hoc assumptions about the variation of rates with pressure. 

If the full kinetic approach is abandoned, it is still possible to obtain nucleation 
rates in the form 

for &(i*). 

J = J ,  exp(-AG*/k,T) (23) 

where AG* is now the free energy of formation of the critical crystallization nucleus 
in unstable equilibrium with the fluid. Classical nucleation theory takes 

AG(i )  = -i Apd + u,A(i)  (24) 
where us, is the solid-liquid surface free energy and Apsl is the difference in chemical 
potential (Gibbs free energy per particle) between bulk liquid and bulk solid. The 
latter is given by 

ApLsi = Ah,i(T) - T &I(T) (5) 
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where A h  and As are the (temperaturedependent) enthalpy change and entropy 
change per particle in the solid-liquid transition. If these are approximated as 
independent of temperature, then 

where TI is the equilibrium freezing temperature. (Alternatively, if heat capacities 
can be measured or estimated for crystal and undercooled liquid, a more accurate 
temperature dependence can be used.) The undercooling TI - T then provides the 
driving force for nucleation. Inserting (26) into (24) and finding the maximum AGO, 
assuming the aitical nucleus to be spherical, gives 8 

J = J" exp(-- 16n .:U: 

3 IcBT(Ah,,)'(l- T/Tr)' 

which is a straightforward generalization of (22). 
?iuo important questions arise concerning (27). The first is whether us, should 

be assigned its value at TI, or if some correction should be made for the fact that 
the actual temperature T may be substantially below T,. This is a difficult problem, 
especially because the only place a surface frec energy can be measured (even in 
principle) is under conditions where the two phases coexist, namely at T,. Thus, 
solid-liquid nucleation raises not only the question of whether the surface free energy 
is size dcpendent (as in gas-liquid nucleation) but also whether it is temperature 
dependent. The second question about (27) concerns the pre-exponential hctor J,. 
Not only is there no kinetic approach to estimate this factor (as in section 2.2) but 
it is also unclear what value should be assigned to the forward rate p(i'). Early 
work on liquid-solid nucleation assumed that atoms or molecules in the melt diffused 
until they 'jumpcd' across the liquid-solid interface, giving as a pre-exponential factor 
the rate of diffusion across a distance of the order of interparticle separations in the 
liquid 1241. It is not evident, however, that diffusion is relevant in a pure liquid, or 
whether the characteristic rate for the elementary process should simply be a phonon 
frequency. It is also quite possible that the proper description of'dynamics should 
involve collective modes, in which fluctuations in local structure lead to the sudden 
appearance of crystalline regions wfth many particles, rather than the stepwise growth 
process useful for gas-liquid nucleation. 

Similar questions arise in the calculation of rates of bubble nucleation (cavitation). 
Within the context of classical nucleation theory, it is possible to estimate the free 
energy to create a spherical cavity in a liquid under tension. As the radius of this 
cavity-increases, its free energy should first increase (because of surface tension) and 
then decrease (because the vapour phase is more stable than the liquid in bulk). 
The critical bubble size can be dekned, and its free energy estimated from classical 
nucleation theory. The pre-exponential factor is quite difficult to estimate, however. 
What is the 'population' of elementary 'cavities' in the liquid, which provides the 
analogue of the n(1) term for gas-liquid nucleation? What are the rates of the 
dynamic processes by which these cavities coalesce to form the critical droplet? 

There are many open questions concerning nucleation kinetics of crystals and 
vapour bubbles from the liquid phase. 
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3. Experimental measurements of nucleation rates 

3.1. Gas-liquid melealion 
The traditional method of studying gas-liquid nucleation involves the use of a 
cloud chamber. At a given temperature, the supersaturation of the vapour S is 
adjusted until droplet formation is observable. Because droplet growth beyond the 
critical nucleus is fast, the rate at which macroscopic droplets appear is close to 
the rate of formation of critical nuclei. The nucleation rate changes so rapidly with 
supersaturation that it is very small (almost unobservable) for supersaturations smaller 
than a critical supersaturation S, and very large for larger values of S. This a l l m  
an approximate determination not of the actual rate, but of the value of S where J 
passes through a magnitude of order 1. The critical supersaturation S, can then be 
compared with the prediction of classical nucleation theory. The results are generally 
good classical theory predicts values of S, that are typically accurate to within 10% 
for most substances [U]. It should be stressed, however, that a variation of 10% in 
S leads to changes in J by many orders of magnitude. 

There are at least three cases in which classical nucleation theory gives predicted 
supersaturations in strong disagreement with experiment. The first is the condensation 
of styrene from the vapour, where the measured S, is much smaller than predicted 
1261. Reiss and co-workers have investigated this system and have argued persuasively 
that gas-phase polymerization occurs in styrene. The resulting short polymers 
(oligomers) then provide sites for the subsequent heterogeneous nucleation of liquid 
droplets of styrene monomer. The method appears to be extremely sensitive to 
oligomer length, and provides a promising way to study gas-phase polymerization 

Experimental critical supersaturations for acetonitrile, on the other hand, are 
significantly higher than predicted [%I. El-Shall has argued that the alignment of 
dipoles near the surfacc of nuclei (in comparison with that at a planar interface) can 
help to explain this discrepancy. A quantitative theory is not available, however, nor 
is it clear why no large deviations from classical theory are found in other dipolar 
liquids such as water, for example. 

A third area where substantial deviations from classical theory are seen is in the 
condensation of liquid metals such as mercury from the vapour. Here, measured 
values of S, can be as much as three orders of magnitude smaller than predicted by 
classical theory [29]. A reasonable explanation for these extremely large effects is that 
small clusters of mercury atoms are insulators, with much smaller cffcctive surface 
tensions than those measured for bulk metallic mercury. A downward adjustment of 
the surface tension by about 40% is sufficient to account for the observations. 

In recent years, new experimental techniques have been developed to measure 
actual rates, instead of just critical supersaturations, and thus to provide a more 
stringent test of classical nucleation theory. One method used is the upward thermal 
diffusion cloud chamber of Katz and co-workers [30,31]. In this device, a temperature 
gradient is established between a warm pool of fluid on the bottom and a cooler 
uppcr surface. This gives rise to a supersaturation that has a maximum value at some 
height in the container. The two temperatures are adjusted so that the nucleation 
rate at this location is measurable (it is typically in the range s-'. 
By using thermodynamic and transport properties of the gas, the supersaturation 
and temperature at the height where nuclei form can be calculated, and the results 
compared with theory. 

[27l. 

to 10 
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A second technique uses a fast-expansion piston cloud chamber. In this, a gas is 
abruptly compressed to a supersaturated state and held for a short interval (a fraction 
of a second, typically). Nuclei form during this interval, after which the piston is 
pulled back to give a vapour that is still sufliciently supersaturated for the existing 
nuclei to gow to observable size, but not such that additional nuclei form. The total 
number of droplets formed is then counted. This technique has the advantage of 
being spatially homogeneous (in comparison to the thermal diffusion cloud chamber), 
but it is temporally inhomogeneous. The time to establish a steady state must be 
significantly shorter than the period during which the system is held at its highest 
supersaturation. This method has been applied by Schmitt and co-workers [32,33] to 
study nucleation rates from IO2 to I@ s-I and by Wagner and Strey [34,35] to 
study rates of 106 to IO'" s-I. A variant of this method using a shock tube has 
been described by Peters and Paikert [3q. 

The different techniques just described access rates that vary oyer 14 orders of 
magnitude. Nonane, GH,, has been studied by three research groups and consistent 
results have been observed [31,33,34]. Other studies have focussed on water [37, 
toluene [32], and the nalcohols 135,361. The consensus of this work is that the 
variation of nucleation rate with supersaturation predicted by classical theory 

In J % A(?') - B(T)/(ln S)' 

is approximately correct, but that the temperature dependence is not. Predicted 
nucleation rates are typically too low at low temperature, and too high at high 
temperature, with errors on the order of several orders of magnitude in either 
direction These results have stimulated the search for improved theories of 
nucleation, some of which we shall consider in sections 4 and 5. 

3.2. Liquid-kolid nucleation 
Nucleation of the liquid-solid transition involves additional assumptions that make the 
interpretation of such experiments more problematical than in the case of gas-liquid 
nucleation. The first difference relates to the surface free energy ms,. The analogous 
quantity for the gas-liquid transition, the surface tension, is easily measurable to high 
accuracy. The liquid-solid surface free energy, on the other hand, has only been 
measured in certain spccial cases 151. Moreover, as pointed out in section 23,  these 
experiments are typically at temperatures that may differ by hundreds of degrees 
from the nucleation conditions. As a result, measurements of nucleation rates for 
crystallization from the melt cannot provide stringent tests of classical theory. 

A second problem with nucleation experiments involving liquids (cavitation as well 
as crystallization) is an even more fundamental one: it is dificult to purify a liquid 
to exclude impurities than can catalyze nucleation. Liquid-solid nucleation is almost 
always heterogeneaus except in special situations. There are two ways to limit the 
role of impurity nucleation. One is to divide the sample into tiny enough portions 
that many of these will not contain a heterogeneous nucleation site. A second is 
to work under conditions where the nucleation rate is high enough (and the growth 
rate low enough) that most of the nuclei form homogeneously. The first method has 
been applied to crystallization of liquid metals and to aqueous salt solutions, and the 
second to nucleation in silicate melts near their glass transition. 

Turnbull pioneered the study of nucleation in liquid metals by devising a technique 
in which a liquid metal sample was broken up into an emulsion of tiny droplets 
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suspended in oil [38]. As such a suspension is cooled, its state is monitored by 
measuring a physical property such as the volume or the heat of crystallization evolved 
as the droplets undergo phase changes. Some droplets crystallize at temperatures 
slightly below T, because they contain active nucleation catalysts. The others remain 
liquid until a definite temperature T, is reached, at which point all crystallize. This 
nucleation temperature is sharply defined because, as (27) shows, the nucleation rate 
changes from being extremely fast to extremely slow Over a very small temperature 
range. 'Ibrnbull associated T. with the homogeneous nucleation temperature of the 
liquid metal, and used classical nucleation theory to estimate the liquid-solid surface 
free energy. w i c a l  values for Tn were %35% lower than T,. 

Subsequent work by Perepezko, however, revealed that the limiting temperature 
Tn could in some cases be lowered further by using a different oil medium [39]. This 
suggests strongly that, although Tm is not determined by impurities, it is affected by 
interactions between the liquid metal droplet and its surroundings. In other words, 
the nucleation in these cases is still heterogeneous, catalysed by thc surface of the 
droplet, not by impurities. It is thus not clear whether true homogeneous nucleation 
is ever observed for liquid metals. One possible exception is liquid gallium, which 
undergoes the largest relative undercooling of any liquid known, nucleating at a 
temperature half that of its equilibrium freezing point [MI. 

Perepezko's measurements of Tn, although they may not represent homogeneous 
nucleation, are nevertheless of considerable interest. His work has shown that when 
pressure is applied to a simple liquid, the change in nucleation temperaturc follows 
that of the freezing temperature. Thus bismuth, which expands on freezing, shows 
decreases in both T, and T, with pressure [41]. There are also interesting results 
related to the phase selection in strongly undercooled liquids. If a liquid is cooled 
suficiently, more than one solid phase can form, and the result may not be that 
predicted by equilibrium thermodynamics. Perepezko applied the droplet emulsion 
technique to gallium, achieving undercoolings large enough to permit the formation 
of ,five different crystalline phases [42]. He also used a very different method of 
pulsed laser annealing to form liquid manganese undercooled by 122 K 1431. Many 
of Perepczko's other experiments apply to crystallization of alloys, a problem that lies 
outside the scope of this review. 

Another important set of measurements has focussed on nucleation of 
crystallization near the glass transition of the fluid. The driving force for nucleation 
(the denominator of the exponential in (27)) increases rapidly as a liquid is 
undercooled, but as the glass transition is approached, the dynamics reflected in 
the prefactor slows down drastically. The nucleation rate thus passes through a 
maximum near the glass transition, and in appropriate cases the variation of rate 
with temperature can be studied. Angel1 and co-workers examined the temperature 
time-transformation (m) curves for ice nucleation from LiCl solution, suspended as 
small drops in an emulsion [44]. The conditions are such that each droplet undergoes 
multiple nucleation events as its crystallization is monitored by thermal analysis. As 
predicted, the nucleation rates fall off on either side of the glass transition. 

A number of research groups have investigated nucleation of crystals in molten 
alkali silicates near their glass transitions [14, 16,45,46]. Here, the transient as well 
as steady-state population of nuclei can be monitored. Comparison with predictions 
of classical theory is made difficult by the large undercoolings and uncertainty about 
possible temperature dependence of the liquid-solid surface free energy 1471. 

A different and promising new technique for studying liquid-solid nucleation 
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involves supersonic nozzle expansions, in which gas streams are cooled as they expand 
adiabatically. Nibler and co-workers [48] used stimulated Raman scattering to study 
the crystallization of nitrogen in liquid clusters, while Bartell and Dibble used electron 
diffraction to examine the freezing of CCI, [49] and CH,CCI, [SO]. The nucleation 
rates measured in this type of experiment can be very high: that quoted in [49] 
was of the order of loz s-*. These experiments share the advantage of the 
emulsion techniques described earlier that the liquid droplets are small enough so 
that nucleation by impurities can be excluded. In addition, however, the free surface 
of the droplet in these experiments is better defined than the oxide-covered surface 
mica1 of liquid metal in oil emulsions. 

4. Beyond classical nucleation theory 

4.1. Modifications of the capillany approximalion 

The deviations between experiment and classical nucleation theory for the gas-liquid 
transition described in section 3.1 have stimulated the search for improved theoretical 
models of nucleation rates. In this section, we discuss some modifications of classical 
theory, and postpone until sections 5 and 6 newer approaches based on density- 
lunctional theory and computer simulation. 

There has been a long-standing controversy about the free-energy change 
associated with forming a critical nucleus, and whether terms in addition to the 
surface free energy contribution of (13) should be included. Lothe and Pound (511 
argued that a cluster has translational and rotational degrees of freedom, and that 
additional terms in the free energy should be included to take these into account. 
The result is an increase in nucleation rates by a factor of the order of 10l7 and, in 
most cases, a marked worsening of agreement behvecn theory and experiment. Reiss 
[52] argued that the use of an experimental surface tension within the capillarity 
approximation already includes most of the effect of fluctuations in the centre of 
mass and rotation of a liquid-like cluster, and that the Lothepound theory results in 
an overmunting of these effects. In the Reiss-Katz-Cohen theory [53], an attempt is 
made to incorporate these two effects consistently, and the result is once again much 
closer to the original classical theory. A final paper by Pound 1541, however, indicates 
that the question is still not settled to everyone’s satisfaction. 

Girshick and Chiu suggested a different extension of classical nucleation theory 
[U]. They used a kinetic approach (resembling that in section 21 above) and stressed 
the role of the extra factor of the supersaturation S in the expression for the 
nucleation rate. They made one additional change as well, however. They noted 
that the expression used in classical nucleation theory for the freeenergy change to 
create a cluster of size i from monomer in the vapour at pressure P, 

AG, = oA( i )  (29) 

cannot hold down to size i = 1, because there can be no free-energy change in that 
limit (a duster of size 1 is already monomer). They therefore suggest a way to make 
this exprcssion ‘self-consistent’ by subtracting the contribution at i = 1, and take 

AG; = u ( A ( i )  - A(1)). (30) 
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This gives the proper limit AG, = 0, and introduces an additional factor of e’ into 
the rate, where B is defined in (IS). Questions can be raised about the validity of 
this ad hoc adjustment, however. As has been stressed earlier, classical theory never 
claims to describe correctly clusters of one or a few atoms, nor does it need to. 
What is needed is only an estimate of the free-energy change to create a cluster of 
i’ atoms from monomer, and it is unclear whether (29) or (30) does a better job at 
this. Equation (30) is a rather arbitrary choice that may empirically improve the fit 
to experiment. 

Another extension of classical nucleation theory was suggested by Dillmann and 
Meier [55,56]. It begins with Fisher’s phenomenological droplet model [ S q  for the 
free energy to create a droplet of size i at pressure Pe 

AG; = ~ ( i ) u A ( i )  + ~lc,T In i - k,T In qu. (31) 

The second and third terms in this free energy (proportional to In i and constant) 
arise from differences between the molecular structure of a free cluster of i molecules 
and of a group of the same number of particles in the bulk liquid. Classical nucleation 
theory is recovered by setting qo to 1 and T to 0; the Lothepound model [Sl] sets r 
= -4. The function ~ ( i )  goes asymptotically to 1 for large clusters, but corrects for 
effects of curvature on the surface tension for smaller clusters. Dillmann and Meier 
assumed the functional form 

The parameters T and qo were then chosen to fit the critical density and pressure 
of the fluid, while a, and a2 were temperature-dependent quantities selected to fit 
the saturated vapour pressure P, and the second virial coefficient. The parameter T 

turned out to have a value of 22, quite different from that in the Lothe-Pound theory. 
Agreement with experiment was quite good for substances ranging from nonane to 
water and the alcohols. It seems surprising that a theory with parameters chosen to 
fit critical point and low-density gas properties appears so successful at giving free 
energies of formation of large clusters away from the critical point. The reasons for 
this success need to be explored further. 

The extension of classical nucleation theory to binary mixtures lies outside the 
scope of this review. It is worth mentioning briefly that k i s s  showed in 1950 [58] 
how twocomponent systems have critical clusters whose properties can be related to 
the surface tension of the liquid mixture and to the bulk thermodynamics of the binary 
system. When the surface tension depends on composition, certain thermodynamic 
inconsistencies can arise, however, which relate to the proper treatment of surface 
adsorption [59]. Wilemski has proposed a ‘revised classical theory’ that reduces to 
ordinary classical nucleation for a single-component system but that is consistent 
thermodynamically [60]. It allows the composition of a ‘surface layer’ in a cluster 
to vary independently of the bulk composition. As for all generalizations of classical 
theory, the question of the applicability of macroscopic concepts to small clusters 
remains an open one. 

4.2. Kinelic approaches 

The generalizations of classical nucleation presented in section 4.1 were based on 
estimates of forward rates for cluster reactions (found from gas ldnetic theory) and 



7640 D W Oxloby 

equilibrium constants for these reactions (involving free energies of formation of 
clusters). It is equally possible to develop theories for both the forward and backward 
rate constants and not discuss free energies at all. In principle, this could give 
a way to calculate nucleation rates directly from the interaction potential, without 
direct reference to measured surface tensions, which are macroscopic properties. 
A number of approaches in this direction have recently been described. As we 
shall see, the sensitivity of nucleation rates to parameters in the theories make such 
me first-principles approaches almost impossible, especially given uncertainties about 
interaction potentials for substances studied experimentally. As a result, comparison 
with experimental data requires fitting either the surface tension or the nucleation 
rates themselves, limiting the ability of experiment to test theory. 

One interesting contribution in this direction was proposed by Nowakowski and 
Ruckenstcin [61]. They calculated rates of loss of particles from clusters by using 
a diffusion equation in energy space to describe the process by which a particle at 
the surface of a cluster gains enough energy to escape. In a second paper [62] they 
employed a full Fokker-Planck equation for motion on the surface of a cluster. The 
two parameters in the interaction potential they used were fit to give the correct 
density of the liquid and the proper surface tension (from the Kelvin equation) for 
large spherical clusters. The latter condition ensures that the theory will reduce to 
classical nucleation theory for large clusters (small supematurations). The results 
showed deviations of the critical supersaturation from classical theory, with the more 
realistic Fokker-Planck theory showing smaller deviations than the simpler earlier 
approach. 

Hale p a ]  has proposed a scaling model for nucleation in which, for fixed 
nucleation rate, the supersaturation varies with temperature as 

Ins, = 0.53{Q(Tc/T- l)}’’’. 

This equation can be derived from classical nucleation theory by making the additional 
assumptions that the pre-exponential factor varies only slowly with temperature and 
that the surface tension varies linearly with temperature, vanishing at the critical 
point. In this case, the parameter R is the surface entropy per particle, and should 
have a nearly universal value. Although the only derivation of this equation is from 
classical nucleation theory, it seems to work reasonably well even in cases where 
classical theory breaks down. The reasons for this are not known. 

Kobraei and Anderson [63,64] did not use a kinetic approach (calculating 
backward rate constan&) but tried to avoid using the surface tension in evaluating 
free energies of small clusters. Instead, they carried out an approximate evaluation 
of the partition function. Their final result depends on a temperaturedependent 
effective range parameter, however, which .was fit to experimental nucleation rates. 
There is no way to test the correctness of the assumptions in this theory, as a result. 

Wilcox and Bauer [65] extended the usual kinetic model for addition and loss 
of particles by clusters to include separate steps where excited clusters (formed 
by addition m particles) are relaxed by collisions with monomer or background 
gas. Clusters can also be excited by such collisions. This doubles the number of 
rare constants, and many assumptions need to be made before nucleation rates are 
calculated. Again, reasonable choices of parameters led to fits to experimental data, 
but the theory was not really tested. 
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S. Density-functional methods 

5.1. Ga.-[iquid &ansition 

The methods of calculating cluster free energies described in section 4 were largely 
macroscopic, relying on the measured surface free energies of liquids and solids. 
Those to be considered in section 6 are fully microscopic, beginning only with an 
assumed interaction potential. In this section, we discuss an interesting intermediate 
approach, one which is macroscopic in using an average density rather than atomic 
coordinates, but which nonetheless retains effects characteristic of molecular distance 
Scales. 

The starting point of the density-functional approach to statistical mechanics is the 
rigorous proof that there exists a free-energy functional of the average density whose 
minima give the thermodynamically stable densities at any given temperature and 
pressure [66]. It is convenient in the case of phase transitions to work in the grand 
ensemble, in which particle numbers fluctuate. The free-energy functional Qv [ P ( T ) ]  
then satisfies the conditions 

~ Q v I ~ ( ~ ) l I & ( ~ )  = 0 at d r )  = P ~ & T )  (33) 

Qv [P,(T)l = -PV (34) 

and 

where p , ( ~ )  is the equilibrium average density, p is the pressure, and V the volume. 
Density-functional methods are particularly useful in studying inhomogeneous fluids, 
in which the density varies in space because free interfaces or walls are present [67]. 

Although density-functional methods are &I principle exact, real calculations 
require approximations. One of the first and most important of these is the Cahn- 
Hilliard theory of interfaces and nucleation, which was first applied to binary sysems 
but which is easily rewritten for the singlecomponent gasliquid bansition considered 
here. Suppose first that the free energy were a purely local functional of the density. 
In this case it could be written as 

Qv, ,,[PI = JdT [ f " ( P ( + ) )  - /LP().)I (35) 

where f, is the Helmholtz free energy per unit volume for a system at (uniform) 
density p, and we have taken advantage of the Legcndre transform relation between 
the Helmholtz free energy and the grand potential, with /L the chemical potential. In 
mean-field theory, f , ( p ) - p p  will have a double minimum at temperatures below the 
critical point, giving stable gas and liquid phases (figure 1). This local functional will 
not give a reasonable interface in an inhomogeneous system, however. If boundary 
conditions are assigned so that the density on one side approaches that of the liquid 
and on the other that of the vapour, the lowest free energy will clearly be achieved 
by taking an infinitely sharp interface. The free-energy functional must therefore 
be non-local, in order to incorporate the cost in free energy associated with spatial 
variation of the density. 

One way to do this was that adopted by Cahn and Hilliard [a], who added a 
square-gradient term to the functional: 

(36) 
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Figum 1. ?he free energy R Cor a uniform fluid of density p, ralculaled in mean-field 
Leoly. Note lhal Ihe &-energy minimum at lower density loses even local stability 
a1 the spinodal. Ln lhe metastable region, an activated process b necessaly to form the 
new, higherdensity phase, 

The coefficient If can depend on density as well; because IC is positive, this last term 
favours a broad interface, where the uniform term favours a narrow one. Tiking the 
functional derivative of a,, leads to a differential equation satisfied by the density 
profile through a planar interface; the solution p( z )  allows the surface tension to be 
calculated through the relation 

AR = u A  (37) 

where A n  is the difference in grand potential between the two-phase system with a 
planar interface of area A and that of pure liquid or vapour at coexistence. 

Cahn and Hilliard also used this free-energy functional to study nucleation [69]. 
In a supersaturated vapour, there is no longer a stable solution of the variational 
equation that includes both vapour and liquid: the liquid phase is stable, the vapour 
phase is metastable, and a planar interface would be unstable toward growth of the 
liquid phase. The density profile of the critical nucleus p ( r )  is, however, a saddle 
point in ‘function space’ between vapour and liquid, so the same condition 6 R v / 6 p  
= 0 applies in this case. This leads to a radial differential equation for the density 
profile 

a.f.fap-2ri ~ ~ ~ - ( a ~ i f a ~ ) ( v ~ ) ~  = p .  (38) 

For small supersaturations S, solutions of this equation give radial density profiles and 
free ener&ies close to those expected from classical nucleation theory. The behaviour 
is quite different, however, on approach to the spinodal, the point at which the vapour 
changes from being metastable to unstable. Near the spinodal, the density change 
in the critical nucleus becomes small in magnitude but large in extent: the radius of 
the nucleus, which shrinks initially with increasing supersaturation, eventually reaches 
a minimum and begins to grow. In addition, the free-energy barrier to nucleation 
vanishes at the spinodal. This behaviour, which is at the hcart of the distinction 
between a metastable and an unstable phase, is a significant advantage of density- 
functional methods over classical nucleation theory, in which the nucleation barrier 
remains finite at the spinodal. Nucleation near the spinodal has been studied further 
by Kiein, who predicts the critical nuclei in this limit to be highly ramified, fractal 
structures [70]. 

The square-gradient approximation will be useful if the free energy is only slightly 
non-local, since it corresponds to a truncated expansion in gradients of the density. 
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For a sharply varying interface, this will not be correct Subsequent studies of gas- 
liquid nucleation by Oxtoby and co-workers [71,72] avoided this approximation by 
working with full non-local functionals. This work adopted the philosophy of mn der 
Waals in taking the interaction potential between molecules to be the sum of a harsh 
repulsive part (modeled with hard spheres) and an attractive tail &(T) .  The former 
was assumed to be short enough in range to be treated with a local freeenergy 
functional (the !mom free energy fh of a fluid of hard spheres), while the latter was 
included using perturbation theory. The freeenergy functional then has the form 

Q,[/JI= J d r  [ f h ( P ( T ) ) - P P ( T ) I  + i J J d r  dr’ ~,,,(I.-.’l)p(.)p(r’). (39) 

The functional derivative of this equation gives not a differential equation but an 
integral equation for the critical density profile: 

where p,,(p) = df,,(p)/dp is the hard-sphere chemical potential. This equation can 
be solved by iteration: a density profile is guessed and substituted into the right- 
hand side and the integral is evaluated numerically. The non-linear function on the 
left is then inverted to find the new density profile. Because the critical nucleus is 
a saddle point rather than a stable minimum, the iteration process will eventually 
diverge toward uniform vapour or uniform liquid, but the saddle point can be located 
numerically and the free-energy barrier An’ to nucleation evaluated. In [71] and 
[72] the nucleation rate was then taken to be 

J = Jo exp(-AW/k,?’) (41) 

with the same pre-exponential J,  used as in classical nucleation theory. 
In [71], Oxtoby and Evans employed a Yukawa attractive interaction 

= - a A 3  exp(-Ar)/4nAr. (42) 

Although this is not highly accurate for real molecules, the range parameter A plays 
an interesting role. When Ad was set to 1 (where d is the hard-sphere diameter), 
very large deviations from classical nucleation theory were predictred (19 orders of 
magnitude). These are well outside the typical experimental range. An increase 
in Ad to only 1.5 brought the non-classical theory close to classical theory, however 
(figure 2). For real substances, the value of Ad can be estimated from the temperature 
dependence of the surface tension, giving results in the range of 1.5 to 2, and 
suggesting that the deviations between classical and non-classical nucleation theories 
may not be that large in the temperature range studied. The success of classical 
nucleation theory for the gas-liquid transition is thus an accident of the typical range 
of attractive potentials. If attractive forces were only slightly longer ranged, classical 
theory would fail drastically. 

A more quantitative attempt to compare with experimental data was carried out in 
[72], in which a Lennard-Jones potential was used. It was divided into a (temperature- 
dependent) effective hard-sphere diameter and a long-range attractive part using 
hard-sphere perturbation theory. Density-functional theory can calculate surface free 
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energies reasonably accurately (to within 10-20%). Because of the extraordinary 
sensitivity of nucleation rates to U, however, the procedure used in [72] was to 
calculate only the ratio of classical to non-classical nucleation rates, Jd/JmcI, as 
a function of supersaturation and temperature and to compare it with the result 
obtained from experiment [31]. The results were revealing: both experiment and 
theory showed linear plots when In J,, was plotted against In Jd (indicating that 
the dependence on supersaturation predicted by classical theory k correct). On the 
other hand, the ratio Jd/Jnd at fixed rate Jd depends strongly on temperature, 
demonstrating a significant shortcoming of classical theory. The behaviour predicted 
by the density-functional theory (figure 3) is the same as that observed for nonane 
and the alcohols. Density-functional theory thus includes crucial non-classical effects 
associated with the small size of critical nuclei. 

In both [71] and [72], bubble nucleation was also studied (cavitation of liquids 
under negative pressure). In this case, much larger quantitative deviations belween Jd 
and J, ,  were predicted: the latter were typically 17 orders of magnitude larger than 
the former using the Lennard-Jones potential, as a result of the fact that the critical 
bubble k smaller than the critical droplet at the same temperature. The conclusion 
is that the tensile strength of liquids (the negative pressure they can sustain bcfore 
breaking via nucleation) is significantly smaller than that predicted by classical theory. 
In fact, measured tensile strengths often are smaller than classical predictions [W. 
Part of this may be due to heterogeneous nucleation on impurities in the liquid, 
however. 

Zeng and Oxtoby [73] extended the density-functional approach to nucleation 
of binary mpours, and related the predictions to the thermodynamically consistent, 
revised classical theoly of Wdemski. 

The work described so far focussed on the free-energy barrier to nucleation, An*,  
and simply adopted the classical pre-exponential rate factor. A more complete theory 
would calculate the dynamics through the saddle pint  for the continuum density, 
using a diffusion equation in function space. Such an approach has been proposed 
by Langer and l h k i  [74], who showed that the pre-exponential J,  is the product 
of a statistical term (related to the phase-space volume near the saddle point) and a 
dynamical term (related to the rate of growth of the droplet radius with time due to 
impingement of gas-phase molecules). Calculation of these two terms for a realistic 
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Figure 3. 'The temperalure dependence of lhe ralio of classical la nonclassical nuclealion 
rates for a Lennard-Jones fluid, under mnditions where the classical rate is 1 cm-' 5'. 
Fmm [72]. 

freeenergy functional, including the characteristic dynamics of low-pressure gases, is 
a priority for the future. 

5.2 Liquid-solid transition 

In mnstrast with the studies of liquid-vapour nucleation just described, only one 
early density-functional calculation of liquid-solid nucleation has been reported. 
Density-functional methods have been widely applied to determine equilibrium phase 
coexistence between liquids and solids in simple fluids and binary mixtures [75], but 
the nucleation problem (which involves non-periodic spatial inhomogeneities in the 
density) is more difficult to treat. 

Harrowell and Oxtoby [76] used a simple perturbative free-energy functional, in 
which the free energy of the solid (treated as an inhomogeneous fluid) was expanded 
to second order in the difference in density relative to uniform liquid. The coefficient 
of the second-order term is related to the direct correlation function c(r), which 
in turn is connected through Fourier transforms to the structure factor S( k) of the 
liquid: 

p,c(k)  = 1 - I/S(k). (43) 

The latter can be measured experimentally using x-ray or neutron scattering, simulated 
on a computer, or predicted theoretically. The density of the crystal nucleus was 
witten in the form 

m 

p ( r )  = p I C p j ( p )  =p(kj a.) (44) 
j =U 

where the sum is over the reciprocal lattice vectors kj of the crystal, and the term with 
j = 0 allows the average density to change from liquid to solid. Such a representation 
of the density is correct for a uniform crystal (for which the p,( r) become constants), 
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and should be reasonable for a spherical crystalline nucleus. The functions p, ( P) were 
assumed to vary more slowly than the actual crystalline density. 

The further assumptions made in [76] were that the dominant contribution to 
c ( k )  comes from its hrst peak, and that the order parameters p,(r) vary slowly 
enough that non-local terms involving them can be treated within a square-gradient 
approximation. This led to a set of coupled differential equations for the radial 
variation of order parameters through the nucleus, which were solved numerically by 
a shooting method. The results were compared with classical nucleation theory (using 
the Same free-energy functional for self-consistency) and showed significant deviations 
(figure 4). Predicted critical undercoolings from classical and non-classical theories 
differed sharply, raising questions about the validity of using nucleation experiments 
(together with classical theory) to measure liquid4olid surface free energies. 

300 r 

Figure 4 Comparison of the barrier height AA. 
for nucleation from nonclassical lheory (solid line) 
wilh h a t  h m  classical lheory (dashed line) in a 
simple model of aystallizalion of liquid sodium. 
Nuclcation OECUPS at a m e  oI 1 on-' s-' when 

0 AA*/ksT is of order 70. Significantly dilferenl 
0 50 100 150 200 250 300 undermolings AT are prcdicled in lhis case by lhe 

'. 50 -- - _ _ _  
two theories. Fmm [76]. 
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This one nucleation calculation is too approximate to draw strong conclusions, 
however, Better free-energy functionals have since been developed, and should be 
applied to the nucleation problem. 

6. Computer simulation studies 

6.1. Gas-liquid nucleation 

Rcbniques of computer simulation offer the possibility of directly determining the 
positions of particles during the nucleation of liquids from the vapour. Because 
of the rarity of nucleation events, it is not possible to simulate nucleation under 
actual experimental conditions. However, the degree of microscopic detail possible 
in simulations does allow certain aspects of nucleation theory to be tested directly if 
appropriate interpretations are made. 

In a computer calculation, a prescription must be employed to identify which 
atoms are in a particular cluster at a given time, because the cluster populations 
change continuously. One possible definition, proposed by Stillinger [77], takes a 
cluster to consist of a group of atoms in which each lies within a distance P~ of at 
least one other atom in the cluster. A second approach, originated by Reiss, Katz 
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and a h e n  1.531, defines a cluster as a set of atoms Eying within a distance R, of 
their centre of mass. With either definition, interactions between clusters allow the 
statistical mechanics of the system to be calculated exactly in principle; in practice, 
however, these interactions are often neglected and the results are useful only if 
there is a plateau over which calculated properties are insensitive to rc or R,. If 
these distances are taken to be too small, no clusters of significant size exist; if they 
are too large, many ‘clusters’ actually represent collections of separate subclusters. 

Rao, Berne and Kalos [78] used the Stillinger cluster definitions to study 
nucleation in finite, @odic systems and showed (from classical nucleation theory) 
that such systems can have a minimum in the free energy for a droplet of definite 
radius. They then began the simulations vith a uniform liquid and expanded the 
volume, creating a vacuum that was then filled with gas particles as the system 
approached equilibrium. Both Monte Carlo and molecular dynamics simulations 
were used, but the latter were less efficient because of the time required to damp 
out temperature fluctuations as particles evaporated and condensed. The cluster 
populations were then monitored at equilibrium, and a maximum was found at a 
point corresponding to the minimum in the hee energy; results were insensitive to 
variation of r, from 1.7~ to 250. However, there were too few clusters found in 
the vicinity of the critical cluster to determine the barrier to nucleation (which would 
lie between the metastable uniform gas phase and the stable liquid cluster plus gas 
phase). At low enough temperature, cavitation was also seen. 

The second cluster definition, using the distance R, from the centre of mass, was 
employed in Monte Carlo calculations of Lee, Barker and Abraham [79]. Note that 
this condition corresponds to placing the i particles inside a spherical shell of radius 
R,. Once again, variation of R, by 50% changed the free energy per particle by 
only a small amount at low enough temperatures, although at higher temperatures no 
plateau value could be established. Such simulations certainly will give reproducible 
results for the free energy of solid-like clusters, but may not be successful for liquid- 
like ones in equilibrium with vapour phase at moderate concentration. 

Reiss and co-workers have recently taken a significant step toward a true molecular 
theory of nucleation [So]. Instead of using only the particle number i as identifying 
parameter of a cluster, they took both i and the cluster volume v, where v is the 
volume of the sphere about the centre of mass containing the i particles (or, more 
precisely, bisecting the (i+l)st particle [Sl]). They then showed that the work to 
create a cluster of i particles in vulume U, W (  i, U), should have a saddle point as a 
function of its two variables, and this point can be located by computer simulation. 
The height of the nucleation barrier can then be rigorously related to the free energy 
of a system at the saddle point. A key aspect of their approach is that account is 
taken of interaction with the surrounding vapour; establishing the volume v creates 
excluded volume that affects the free energy of the entire system. The choice of the 
volume v is then no longer an artificial constraint but, in their words, ‘a procedural 
device for organizing the counting’ of configurations in the partition function. Further 
results from this approach will be of pea t  interest. 

6.2. Liquid-solid nucleation 
In a molecular dynamics simulation, the temperature of a liquid can be lowered 
rapidly by various techniques, the most straightfolward of which is to periodically 
reduce the velocities by a factor, or even to set the velocities to zero. After such a 
drastic quench, time must be allowed for the system to reach equilibrium at a new 



~ 

7648 D W Oxloby 

temperature, as potential energy is once again converted into kinetic energy. After a 
liquid is quenched to a temperature well below its equilibrium freezing point, a glass 
can form in which particle diffusion vanishes and the system remains amorphous, or 
a crystal can nucleate and grow. The first observation of crystal nucleation on the 
computer (in a tennard-Jones fluid) was due to Mandell et a2 [SZ], and since that time 
many systems have been studied. For example, it was shown that relatively modest 
changes in the potential can reproducibly alter the crystal phase formed [rom BCC to 
FCC 1831. The ‘moment’ at which nucleation OCCUIS can be estimated by randomizing 
the particle velocities and seeing whether a crystal still forms; if it does, thc barrier 
to nucleation has presumably been crossed. 

A major question about this work is whether the periodic boundary conditions 
affect the nucleation. Earlier work argued that they did not, because the orientation 
of the crystallite that formed was not directly related to the orientation of the periodic 
simulation cell. A more definitive answer was provided by the work of Honeycutt 
and Andersen [MI. If periodic boundary conditions are irrelevent, the nucleation rate 
should be proportional to the size of the system (as in real experimental situations). 
What was seen, however, was that the simulated nucleation rate continued to decrease 
at least out to 1500 Lennard-Jones particles. This shows that nuclcation is highly 
sensitive to the presence of periodic images in neighbouring cells, and calls into 
question many of the earlier results. A further calculation [SI used 15000 and then 
lo6 particles, and represents one of the largest simulations ever performed. This 
calculation employed Voronoi polyhedra to obtain precise information about atomic 
surroundings during nucleation. The results suggested that by 15000 particles the 
effects of system size dependence had disappeared, but that the million-particle system 
was necessary to exhibit the full diversity in nucleation behaviour of a macroscopic 
system. The size of a critical nucleus under the conditions studied was 10 to 20 
particles; for larger critical nuclei (smaller undercoolings) even larger simulations 
would be required. 

A very interesting recent paper 1861 studied the height of the free-energy barrier 
to crystal nucleation for a system of soft repulsive spheres (?-Iz potential). This 
approach began by noting that bond orientational order parameters allow one to 
distinguish liquid from crystal, and different crystal structures from one another. One 
such parameter, called Q6, is almost the same for the FCC, FICP and BCC lattices, 
and was taken as the ‘coordinate’ joining liquid and solid. The authors used the 
technique of umbrella sampling to bias the Monte Carlo simulation toward states of 
high freeenergy between uniform liquid and crystal (an unbiased simulation would 
be ovenvhelmingly dominated by the regions of lowest free energy). In this way, they 
were able to extract the variation of free energy with crystallization coordinate Q6 and 
measure the height of the barrier. They stressed some important caveats regarding the 
small size of the systcms studied, but nonetheless drcw some interesting conclusions. 
They argued in particular that the BCC ctystal forms more easily, not because of a 
larger thermodynamic driving force, but because the barrier to its nucleation is low. 
There is no such easy path connecting the liquid to an FCC crystal. The first results 
from this new technique open up new prospects for the study of crystal nucleation 
from the melt. 

7. Conclusion 

Nucleation rates are extraordinarily sensitive to small changes in conditions: 
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temperature, pressure, impurities, interaction potentials. Although this fact makes 
the first-principles calculation of nucleation rates quite difficult, it also means that 
nucleation experiments provide a very sensitive probe of microscopic events. By 
achieving greater understanding of and control over nucleation rates, we can change 
the course of first-order phase transitions and perhaps create materials with new and 
useful properties. Recent advances in the study of nucleation are pointing in the right 
direction, but much remains to be accomplished. 
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